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Abstract-This paper presents a supervised learning approach 
to support the screening of HIV literature. The manual screening 
of biomedical literature is an important task in the process 
of systematic reviews. Researchers and curators have the very 
demanding, time-consuming and error-prone task of manually 
identifying documents that must be included in a systematic re­
view concerning a specific problem. We implemented a supervised 
learning approach to support screening tasks, by automatically 
flagging potentially selected documents in a list retrieved by a 
literature database search. To overcome the main issues associated 
with the automatic literature screening task, we evaluated the 
use of data sampling, feature combinations, and feature selection 
methods generating a total of 105 classification models. The 
models ;ielding best results were composed by the Logistic 
Model Trees classifier, a fairly balanced training set, and feature 
combination of Bag-Of-Words and MeSH terms. According to our 
results, the system correctly labels the great majority of releva�t 
documents, and it could be used to support mv systematIc 
reviews to allow researchers to assess a greater number of 
documents in less time. 

I. INT RODUCTION AND BACKGROUND 

Open literature repositories are usually the main source 
of knowledge used by scientific researchers. Life science and 
biomedical databases contain a large number of documents, 
and are rapidly growing following the pace of scientific 
publications. The screening of scientific literature is typi­
cally performed by researchers identify relevant studies for a 
given topic and support systematic reviews for health care. 
PubMed [27], one of the largest open scientific databases, 
contained over 24 million citations of biomedical literature 
as of September 2015. Research programs dedicated to study 
public health generally need to manipulate and analyze large 
amounts of data to support processes such as systematic 
reviews of biomedical literature [25]. Following the publication 
speed of scientific literature, the available literature related 
to HIV and AIDS research is vast and increases quickly. 
In the year 2000, around 10k HIV related articles were 
added to PubMed, while over 16k HIV related articles were 
included in the database during 2014. Performing systematic 
reviews of such voluminous data can be overwhelming for 
scientific researchers. The evaluation of biomedical data 
is highly relevant to assist the information discovery process 
in biomedical research (e.g. [24], [26]). In addition, several 
studies described the usefulness of automating the process 
of bioliterature handling and screening (e.g. [2], [3], [31]). 
Machine learning approaches have been applied to support 
systematic reviews by performing literature screening (e.g. [6], 
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[34]). In particular, supervised learning approaches can be 
beneficial for this task, since the use of classification models 
allows scientists to evaluate a great number of documents in a 
short period of time, reducing their manual effort. Automatic 
literature classification also reduces the possibility of missing 
relevant information, as a system-based screening might be 
less error-prone than a manual screening [33]. 

The development of an automatic approach to perform 
literature screening can pose several challenges. One of the 
main issues is the underlying distribution of the data. Given 
a list of documents retrieved by a query search, researchers 
usually label most of them as excluded, and only a small 
portion is selected as relevant, and labeled as included. Since 
only a few documents are considered important, and many are 
filtered out at this phase, the literature screening task generally 
handles datasets presenting a fundamental characteristic of 
class distribution imbalance. A dataset is considered imbal­
anced when the difference between the number of documents 
belonging to each class is so severe that it interferes in the 
machine learning process [15]. The class imbalance introduces 
noise in a dataset, and affects directly the performance of 
supervised learning methods. Classification algorithms tend to 
maximize the overall accuracy, therefore favoring the most 
frequent class while overlooking the least represented class 
in a document collection [36]. Studies on imbalanced learning 
have evaluated different techniques to overcome the effect of 
the difference between class distributions (see Section II). 

Another challenge related to the development of an au­
tomatic approach for literature screening is the definition 
of a relevant feature subset. The use of large datasets in 
classification tasks results in models with an extensive number 
of features. Many of these features will likely be noisy or 
barely discriminative, thus only adding computational cost to 
the task. Moreover, a highly dimensional classification model 
may use an excessive number of features, which over-fits the 
training data, and interferes negatively in the performance of 
classification algorithms. Feature selection methods [14] are 
the strategies applied in classification models to identify the 
subset of features that most suits a given task. Feature selection 
reduces the size of the feature space by keeping only the most 
relevant features for a specific problem. 

In this work, we investigated the use of imbalanced learning 
strategies and feature selection methods applied to text classi­
fication with the goal of supporting HIV literature screening. 
These techniques were studied in an attempt to overcome the 
two issues previously described, and commonly found in text 
classification of biomedical literature. 



II. RELATED W ORK 

Designing a supervised learning model to support the 
manual screening of biomedical literature can be challenging. 
The two main issues related to this task are the imbalanced 
class distribution in the dataset, and the selection of a relevant 
subset of features. We studied imbalanced learning and feature 
selection techniques as methods to overcome these conditions. 

A. Imbalanced Learning 

A dataset with the realistic class distribution of HIV liter­
ature screening presents a strong imbalance between included 
and excluded class labels among the document instances. 
Datasets with imbalanced class distributions are commonly 
found in a variety of fields such as speech recognition [18], 
medical diagnosis [11], and fraud and image detection [7]. 

The class imbalance in the data greatly affects the classifier 
performance because excluded instances are massively repre­
sented in the dataset when compared to the number of instances 
belonging to the included class. Therefore, the classification 
model has many more examples of the majority class to learn 
from, and this introduces a bias in the prediction process. 

The imbalance dataset issue has been studied and pointed 
out as an important factor in supervised learning (e.g. [13], 
[28]). Various approaches have been evaluated in the field 
to overcome the imbalance issue. Cost-sensitive classifiers 
and data-sampling are the most common methods that were 
studied to handle tasks that present an imbalanced dataset. 
Cost-sensitive methods are implemented at the algorithm level, 
while sampling methods are implemented at the data level. 
The strategy used by cost-sensitive classifiers [21] is to lower 
classification errors in the minority class by intentionally 
introducing a bias, such as a weight, during the learning phase 
so that classification errors made in the minority class are more 
costly than errors made in the majority class. Data sampling 
methods were first presented and discussed by [lO], through 
the Synthetic Minority Over-sampling Technique (SMOTE), 
which describes the two most popular sampling strategies: 
undersampling and oversampling. Oversampling consists of 
adding instances to the minority class by generating new syn­
thetic instances; whereas, undersampling consists of discarding 
instances from the majority class. Both techniques are used 
until a certain class distribution balance is reached. 

[21] and [8] pointed out that the performance of sampling 
is comparable to other state-of-the-art imbalanced strategies, 
and the method is less restrictive than the cost-sensitive ap­
proach [35]. In addition, the fact that sampling is performed 
as a pre-processing step makes it more flexible than the 
cost-sensitive approach. Since sampling is executed at the 
data level, it has two advantages: first, it can be applied 
across different types of tasks; second, it can be inserted in 
a pipeline regardless the classification algorithm being used. 
A cost-sensitive classifier, that has to implement changes at the 
algorithm level, could be restrictive in certain types of models 
since not all classification algorithms are capable of adapting 
the prediction computation by introducing a bias. 

Weiss et al. [35] also described that, by using undersam­
pIing methods, time and computational resources required by 
the learning phase are reduced because less data is handled 
by the classification algorithm. Undersampling methods out­
performed oversampling methods in tasks handling data sets 
from various domains (e.g. [12], [20]). In addition, under­
sampling was shown to improve performance in classification 
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tasks using data sets with an imbalanced ratio equal or more 
severe than 1:2 [19]. For these reasons, we implemented a 
progressive undersampling technique to tackle the imbalance 
class distribution problem that could affect the performance of 
an automatic approach to support HIV literature screening. 

B. Feature Selection 

The selection of features is usually performed according to 
an evaluation metric used to assess the feature relevance. By 
using feature selection techniques, it is possible to determine a 
significant subset of features which is relevant to a given task, 
and reduce the size of the feature space in an informed manner. 
With a smaller and tailored set of features, the learning phase 
requires less computational resources, and the classification 
model reduces the number of noisy or irrelevant attributes. By 
removing the least discriminative features, the model is also 
less likely to over-fit the training data. 

Several feature selection metrics have been described in 
the literature, and evaluated in text classification tasks (e.g. [4], 
[5]). Among the most popular ones are: Information Gain, Chi­
Square test, Term Frequency, Document Frequency, Inverse 
Document Frequency and Odds Ratio. Comparative studies 
to evaluate the use of feature selection metrics were not 
clear about which metric is the most recommended for text 
classification problems in general. Therefore, a reasonable 
choice of feature selection metric can be made by taking into 
account the characteristics of the specific classification task. 

In this work, the Odds Ratio (OR) and Inverse Document 
Frequency (IDF) were applied as feature selection metrics. 
Odds Ratio [30] was selected because it evaluates how strongly 
the occurrence of a feature is associated to a particular the doc­
ument class. Inverse Document Frequency [29] was selected 
because it evaluates the specificity of a given feature. Rarer 
terms will present higher IDF values, indicating that they are 
more discriminative. 

III. MET HODOLOGY 

A. Corpus and Data Sampling 

The experiments were conducted on the SHARE corpus'. 
SHARE is an easy-to-search and regularly updated repository 
of synthesized research evidence addressing topics related to 
HIV/AIDS. SHARE includes HIV-relevant systematic reviews 
and products derived from the findings of systematic reviews. 
To identify syntheses to include in SHARE, the SHARE 
curators conducted searches of Medline2, Embase3, and the 
Cochrane Library4. These searches are periodically updated 
to ensure the most recent HIV-relevant syntheses are identi­
fied. Two reviewers independently assess all records identified 
through the searches to determine whether they should be 
included in SHARE. 

The document collection is composed of 18,703 scientific 
abstracts retrieved from the PubMed database. The distribution 
of document instances in SHARE represents the same ratio 
of included and excluded abstracts that scientific researches 
encounter when performing literature screening for HIV sys­
tematic reviews. As the statistics about SHARE in Table I show 
the class distribution in the data is highly imbalanced sinc� 

1 http://www.hivevidence.ca 
2http://www.nlm.nih.gov/pubs/factsheets/medline.html 
3http://www.elsevier.com!solutions/embase 
4http://www.cochranelibrary.com 



TABLE l. STATISTICS ON THE SHARE 

Attribute Number % 
Total number of instances 18,703 100% 
Negative instances 17,402 93.05% 
Positive instances 1,301 6.95% 
Unique words in paper abstracts 31,632 -

Unique words in paper titles 6,821 -

Unique MeSH terms in papers 17,971 -

TABLE II. TRAINING SETS: UNDERSAMPLING APPROACH 

Set Included % Excluded % 
I 991 10% 8,915 90% 
2 991 20% 3,965 80% 
3 991 30% 2,319 70% 
4 991 40% 1,487 60% 
5 991 50% 991 50% 

only �7% of the total instances are labeled included. 
In order to perform supervised learning, we split the 

document collection in two parts. The first part contains the 
document instances used to compose the test set. The test set 
represents �1O% of the entire collection, randomly selected 
to avoid any bias. It contains 1,588 instances (110 documents 
labeled as included and 1,478 labeled as excluded). The class 
distribution in the test set is similar to the distribution in the 
entire document collection. The original distribution of the task 
is maintained in the test set because our goal is to design 
a model that will perform best when handling imbalanced 
data. After isolating the test set instances, five training sets 
were generated through a random undersampling approach, to 
progressively discard instances from the majority class. The 
first training set contains a similar class distribution as the 
one found in the document collection, with 10% of included 
instances. The remaining four training sets were created until 
the distribution of included instances reached 50%, creating 
a balanced class distribution. Table II shows the progressive 
undersampling approach used to generate all training sets. 
To perform progressive undersampling in the training sets, 
we randomly removed instances from the majority class. Our 
goal was to reach a equal class distribution, and compare the 
performance of the classification models in order to identify 
which one is the most appropriate for this task. 

B. Feature Extraction and Selection 

Extraction. To build several classification models and 
compare their performance, we extracted different types 
of features, from the baseline Bag-Of-Words (BOW) to 
MeSH terms [17], and a set of domain keywords iden­
tified by researchers working on HIV systematic reviews. 
The features were mainly extracted from the PubMed XML 
<AbstractText> and <ArticleTitle> text fields. Each docu­
ment instance was represented as a feature vector that account 
for the occurrence of each feature in a given document. A large 
matrix of documents by features was created and used to feed 
the classification algorithms. The following feature types were 
extracted from SHARE: 

Feature type #1: Bag-Of-Words of the abstract and article title, 
considering words with an occurrence of at least 2, and a length 
of at least 3 characters; 
Feature type #2: MeSH terms list, considering terms with an 
occurrence of at least 2; 
Feature type #3: Domain keywords relevant to HIV systematic 
reviews. 
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Selection. Since the dataset contains over 18,000 docu­
ment instances, the feature extraction may generate a large 
and sparse matrix of features by documents. In addition to 
requiring extra computational resources, such a matrix can 
also interfere with the classifier performance by introducing 
a bias and overfit the training data. To overcome this, we 
investigated the use the of feature selection before feeding 
the data to the classification algorithms. We aim to identify 
the most suitable feature subset for supporting HIV literature 
screening by comparing the results obtained when using Odds 
Ratio and IDF, as described in Section II-B, to filter out the 
less discriminative attributes in the classification models. 

To perform feature selection using Odds Ratio as a metric, 
the odds ratio value was computed for each feature extracted 
from a training set, then a confidence interval for each odds 
ratio value was computed, using a confidence level of 95%. 
Two conditions were considered to perform filtering: features 
with 1) a confidence interval that includes the null hypothesis 
(i.e., value of 1.0); or 2) an odds ratio value that is less or 
equal to the null hypothesis (i.e., value of 1.0) were discarded, 
and the remaining features were used to build the models. 

To perform feature selection using IDF as a metric, we first 
computed the inverse document frequency of each feature in a 
given training set considering the occurrence in both included 
and excluded classes. Then, similarly to the odds ratio filtering, 
all features with an IDF value smaller than 1.0 were discarded5. 

C. Classification Algorithms 

In our experiments, we made use of three different classi­
fication algorithms: Naive Bayes (NB), Logistic Model Trees 
(LMT) and Support Vector Machine (SVM). NB is used as 
a baseline evaluation of our sampling and feature selection 
strategies. NB assumes a strong conditional independence of 
features. This means that in a feature vector F, the features 
II, ... , in are conditionally independent from each other, given 
a class C. LMT [16] was previously described by [9] as being 
able to efficiently handle tasks with imbalanced datasets. It 
consists of a combination of Decision Tree and LogitBoost 
algorithms, being a classification tree, with logistic regression 
models on its nodes. SVM [32] was also recommended by 
previous works (e.g. [1], [23]) when dealing with i�balanced 
data. SVM computes the margin maximum claSSifier [22], 
which is the largest radius around a classification boundary, 
and tries to separate data points on a dimensional space, to 
identify the different classes to which they belong. 

The experimental results are evaluated in terms of preci­
sion, recall, F-measure, and F-2. While the F-measure is the 
harmonic mean between precision and recall, the F-2 score 
emphasizes recall over precision and is used to evaluate the 
model capability of identifying relevant instances. 

IV. EXPERIMENTS AND RESULTS 

A. Experiments 

We generated 105 classification models to analyze the 
influence of undersampling (different class distributions); the 
discriminative capability of feature types; and the impact of 
feature selection methods. These three aspects were analysed 
with the three classification algorithms. The models were then 
created using varied combinations of the following variables: 

SThis value was experimentaUy set. 



TABLE III. SUMMARY OF EXPERIMENT RESULTS USING 
UNDERSAMPLING 

Feature Configuration Balance Classifier Precision Recall F-m 

#1: Bag-Of-Words 90% - 10% LMT 0.562 0.664 0.608 
#1: Bag-Of-Words 90% - 10% NB 0.218 0.855 0.347 
#1: Bag-Of-Words 90% - 10% SVM 0.733 0.500 0.595 
# I: Bag-Of-Words 70% - 30% LMT 0.481 0.800 0.601 
#1: Bag-Of-Words 70% - 30% NB 0.213 0.909 0.345 
#1: Bag-Or-Words 70% - 30% SVM 0.540 0.800 0.645 
#1: Bag-Of-Words 60% - 40% LMT 0.395 0.891 0.547 
#1: Bag-Of-Words 60% - 40% NB 0.200 0.864 0.324 
#1: Bag-Of-Words 60% - 40% SVM 0.473 0.864 0.611 
#1: Bag-Of-Words 50% - 50% LMT 0.385 0.900 0.540 
#1: Bag-Of-Words 50% - 50% NB 0.210 0.927 0.342 
#1: Bag-Of-Words 50% - 50% SVM 0.399 0.900 0.553 
#2: Bag-Of-Words + MeSH 90% - 10% LMT 0.584 0.664 0.621 
#2: Bag-Of-Words + MeSH 90% - 10% NB 0.233 0.818 0.363 
#2: Bag-Of-Words + MeSH 90% - 10% SVM 0.000 0.000 0.000 
#2: Bag-Of-Words + MeSH 70% - 30% LMT 0.481 0.800 0.601 
#2: Bag-Of-Words + MeSH 70% - 30% NB 0.144 0.918 0.250 
#2: Bag-Of-Words + MeSH 70% - 30% SVM 1.000 0.009 0.018 
#2: Bag-Or-Words + MeSH 60% - 40% LMT 0.467 0.900 0.615 
#2: Bag-Of-Words + MeSH 60% - 40% NB 0.162 0.900 0.275 
#2: Bag-Of-Words + MeSH 60% - 40% SVM 0.070 0.882 0.129 
#2: Bag-Of-Words + MeSH 50% - 50% LMT 0.385 0.900 0.540 
#2: Bag-Of-Words + MeSH 50% - 50% NB 0.126 0.936 0.222 
#2: Bag-Of-Words + MeSH 50% - 50% SVM 0.069 1.000 0.130 
#3: Keywords 90% - 10% LMT 0.635 0.491 0.554 
#3: Keywords 90% - 10% NB 0.304 0.618 0.407 
#3: Keywords 90% - 10% SVM 0.711 0.291 0.413 
#3: Keywords 70% - 30% LMT 0.462 0.655 0.541 
#3: Keywords 70% - 30% NB 0.283 0.691 0.401 
#3: Keywords 70% - 30% SVM 0.516 0.591 0.551 
#3: Keywords 60% - 40% LMT 0.427 0.691 0.528 
#3: Keywords 60% - 40% NB 0.288 0.673 0.403 
#3: Keywords 60% - 40% SVM 0.436 0.655 0.524 
#3: Keywords 50% - 50% LMT 0.321 0.818 0.462 
#3: Keywords 50% - 50% NB 0.288 0.700 0.408 
#3: Keywords 50% - 50% SVM 0.305 0.755 0.435 

F-2 
0.641 
0.540 
0.534 
0.706 
0.550 
0.730 
0.712 
0.519 
0.741 
0.710 
0.551 
0.719 
0.646 
0.545 
0.000 
0.706 
0.442 
0.011 
0.759 
0.471 
0.266 
0.710 
0.410 
0.270 
0.514 
0.512 
0.330 
0.604 
0.536 
0.574 
0.615 
0.531 
0.595 
0.625 
0.544 
0.583 

Training set balances: 10% included (IN) & 90% excluded 
(EX) (similar to the task real distribution); 20% IN & 80% 
EX; 30% IN & 70% EX; 40% IN & 60% EX; 50% IN & 
50% EX. 
Feature configurations: #1 BOW; #2 BOW & MeSH terms; 
#3 Keywords. 
Feature selection: Odds Ratio; Inverse Document Frequency. 
Classification algorithms: Na"ive Bayes; Logistic Model Tree; 
Support Vector Machine. 

First, a set of experiments was executed to evaluate the 
undersampling technique, and therefore the use of various class 
balances in the training set across the different feature types 
for the three classifiers. Next, we ran new experiments using 
the same undersampled training sets and classifiers, but this 
time applying feature selection to the feature configurations 
that demonstrated the best performances. 

B. Results 

Since the focus of our work is to analyse the capability of 
a model to identify included instances, we evaluated model 
performance in terms of the results obtained only for the 
included class6. 

Table III shows the results of the models generated us­
ing undersampling, the three feature configurations and three 
classifiers. The best F-measure (first bold line in Table III) was 

6The overall performance obtained in the excluded class remains generally 
over 90%. 
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obtained by a classification model composed of feature config­
uration #1 (Bag-Of-Words), the SVM classifier, and a training 
dataset containing 30% of included instances. However, we are 
more interested in the F-2 score because it emphasizes recall 
over precision, and indicates a model's capability to identify 
the greatest number of included instances. The F-2 results 
demonstrate that the best model (second bold line in Table III) 
is composed of the feature configuration #2 (Bag-Of-Words + 
MeSH), the LMT classifier and a training set containing 40% 
of included instances. This model achieved 0.467 in precision, 
0.9 in recall, 0.615 in F-measure and 0.759 in F-2 score. We 
call this model HM1. Models based on features #2, SVM 
and 90%-10% or 70%-30% balance show results equal (or 
very close) to zero because these models classified almost all 
instances in the excluded class. 

As the models with the best F-measure and F-2 were 
associated to configurations #1 and #2, we applied feature 
selection to all models that used these configurations. Tables IV 
and V show the results of these models using IDF and Odds 
Ratio, respectively. Table VI shows the reduction in the feature 
space obtained with these feature selection teachniques, across 
the five different training sets. To summarize the effect of 
the feature selection methods, we show the feature space size 
for the largest training set (with lO% of included instances), 
the best models (40% of included instances), and the smallest 
training set (with 50% of included instances). In general, Odds 
Ratio reduced the feature space size of configuration #1 by 
�80%, while IDF reduced it by less than 1 %. For configuration 
#2, the reduction by Odds Ratio was over 80%, while IDF 
reduced it by �18%. 

As we can observe from the F-2 scores obtained with 
feature selection, Odds Ratio somewhat outperforms the results 
obtained with IDF filtering. In general, the performance of 
configuration #2 still outperforms those of configuration # 1. 
The best model is composed of the feature configuration #2 
(Bag-Of-Words + MeSH), the LMT classifier, a training set of 
40% of included instances, and filtering by Odds Ratio. This 
model (in bold in Table V) achieved 0.445 in precision, 0.882 
in recall, 0.591 in F-measure and 0.737 in F-2 score. We call 
this model HM2. Although HM2 did not outperform HMl's 
performance (in which no filtering was applied), HM2 has very 
similar results to HM 1. The major difference between the two 
is that HM1 has a feature space size of 14,459; while the 
feature space size of HM2 is 2,411. By having a more concise 
feature space, HM2 requires less computational resources and 
time for the learning phase. Thus, HM2 can be a suitable choice 
when resources are limited. 

V. DISCUSSION 

The best models identified during our experiments, HM1 
and HM2, both made use of the LMT classifier and the feature 
configuration composed by Bag-Of-Words and MeSH terms, 
using a training set with 40% of included instances. We discuss 
here our observations on these three parameters. 

Imbalanced data. As demonstrated by [3] on biomedical 
literature classification, results obtained with a more balanced 
training corpus outperform the models based on a training 
corpora that have similar distributions to the original task of 
literature screening. Among all different class distributions 
in the five training sets, the balance that yields better results 
contained 40% of included instances and 60% of excluded 



TABLE IY. SUMMARY OF EXPERIMENT RESULTS USING IDF FOR 
FEATURE SELECTION 

Feature Configuration Balance Classifier Precision Recall F-m F-2 
#1: Bag-Of-Words 90% - 10% LMT 0.600 0.545 0.571 0.555 
#1: Bag-Of-Words 90% - 10% NB 0.214 0.845 0.342 0.532 
#1: Bag-Of-Words 90% - 10% SVM 0.688 0.400 0.506 0.437 
#1: Bag-Of-Words 70% - 30% LMT 0.462 0.827 0.593 0.714 
#1: Bag-Of-Words 70% - 30% NB 0.209 0.909 0.340 0.544 
#1: Bag-Of-Words 70% - 30% SVM 0.518 0.655 0.578 0.622 
#1: Bag-Of-Words 60% - 40% LMT 0.438 0.836 0.575 0.707 
#1: Bag-Of-Words 60% - 40% NB 0.195 0.864 0.318 0.512 
#1: Bag-Of-Words 60% - 40% SVM 0.479 0.727 0.578 0.659 
#1: Bag-Of-Words 50% - 50% LMT 0.394 0.864 0.541 0.698 
#1: Bag-Of-Words 50% - 50% NB 0.199 0.927 0.328 0.535 
#1: Bag-Of-Words 50% - 50% SVM 0.386 0.800 0.521 0.659 
#2: Bag-Of-Words + MeSH 90% - 10% LMT 0.567 0.655 0.608 0.635 
#2: Bag-Of-Words + MeSH 90% - 10% NB 0.217 0.845 0.345 0.535 
#2: Bag-Of-Words + MeSH 90% - 10% SVM 0.688 0.400 0.506 0.437 
#2: Bag-Of-Words + MeSH 70% - 30% LMT 0.462 0.827 0.593 0.714 
#2: Bag-Of-Words + MeSH 70% - 30% NB 0.159 0.909 0.271 0.468 
#2: Bag-Of-Words + MeSH 70% - 30% SVM 0.526 0.645 0.58 0.612 
#2: Bag-Of-Words + MeSH 60% - 40% LMT 0.438 0.836 0.575 0.707 
#2: Bag-Of-Words + MeSH 60% - 40% NB 0.159 0.882 0.269 0.462 
#2: Bag-Of-Words + MeSH 60% - 40% SVM 0.462 0.727 0.565 0.652 
#2: Bag-Of-Words + MeSH 50% - 50% LMT 0.394 0.864 0.541 0.698 
#2: Bag-Of-Words + MeSH 50% - 50% NB 0.173 0.927 0.291 0.495 
#2: Bag-Of-Words + MeSH 50% - 50% SVM 0.350 0.845 0.495 0.659 

TABLE Y. SUMMARY OF EXPERIMENT RESULTS USING ODDS RATIO 
FOR FEATURE SELECTION 

Feature Configuration Balance Classifier Precision Recall F-m F-2 
#1: Bag-Of-Words 90% - 10% LMT 0.588 0.609 0.598 0.605 
#1: Bag-Of-Words 90% - 10% NB 0.228 0.864 0.361 0.555 
#1: Bag-Of-Words 90% - 10% SVM 0.697 0.564 0.623 0.586 
#1: Bag-Of-Words 70% - 30% LMT 0.481 0.800 0.601 0.706 
#1: Bag-Of-Words 70% - 30% NB 0.220 0.900 0.353 0.556 
#1: Bag-Of-Words 70% - 30% SVM 0.497 0.827 0.621 0.730 
#1: Bag-Of-Words 60% - 40% LMT 0.445 0.882 0.591 0.737 
#1: Bag-Of-Words 60% - 40% NB 0.213 0.873 0.343 0.539 
#1: Bag-Of-Words 60% - 40% SVM 0.430 0.873 0.577 0.724 
#1: Bag-Of-Words 50% - 50% LMT 0.392 0.909 0.548 0.719 
#1: Bag-Of-Words 50% - 50% NB 0.212 0.882 0.342 0.540 
#1: Bag-Of-Words 50% - 50% SVM 0.388 0.918 0.546 0.721 
#2: Bag-Of-Words + MeSH 90% - 10% LMT 0.593 0.609 0.601 0.606 
#2: Bag-Of-Words + MeSH 90% - 10% LMT 0.228 0.864 0.361 0.555 
#2: Bag-Of-Words + MeSH 90% - 10% LMT 0.755 0.336 0.465 0.378 
#2: Bag-Of-Words + MeSH 70% - 30% LMT 0.481 0.800 0.601 0.706 
#2: Bag-Of-Words + MeSH 70% - 30% LMT 0.220 0.900 0.353 0.556 
#2: Bag-Of-Words + MeSH 70% - 30% LMT 0.497 0.827 0.621 0.730 
#2: Bag-Of-Words + MeSH 60% - 40% LMT 0.445 0.882 0.591 0.737 
#2: Bag-Of-Words + MeSH 60% - 40% LMT 0.213 0.873 0.342 0.539 
#2: Bag-Of-Words + MeSH 60% - 40% LMT 0.157 0.927 0.269 0.468 
#2: Bag-Of-Words + MeSH 50% - 50% LMT 0.392 0.909 0.548 0.719 
#2: Bag-Of-Words + MeSH 50% - 50% LMT 0.212 0.882 0.342 0.540 
#2: Bag-Of-Words + MeSH 50% - 50% LMT 0.384 0.900 0.538 0.709 

instances. This distribution allows the more balanced model 
to still maintain the underlying characteristic of the data, 
while removing extra noise that would be introduced by 
additional excluded instances. We observed that models with 
such balance can better classify instances on the test set 
composed of the same class distribution as the original task 
(10%-90%). 

Feature configurations. The configuration containing 
only keywords is less discriminative compared to Bag-Of­
Words and MeSH terms. We attribute this result to the size 
of the feature set. Feature configuration #1 has 9,9l3 
22,060 features 7 and feature configuration #2 has 12,688 -

7both considering the most balanced, and the largest and most imbalanced 
training set, respectively 
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TABLE VI. FEATURE SPACE SIZE REDUCTION AFTER FILTERING BY 
ODDS RATIO AND IDF 

Configuration Included (%) # features IDF (%) OR (%) 
#1: Bag-Of-Words 50% 9,913 9,826 0.88% 2,042 79.40% 
#1: Bag-Of-Words 40% 11,183 11,092 0.81% 2,392 78.61% 
#1: Bag-Of-Words 10% 22,060 21,944 0.53% 4,040 81.69% 
#2: Bag-Of-Words + MeSH 50% 12,688 10,511 17.16% 2,047 83.87% 
#2: Bag-Of-Words + MeSH 40% 14,459 11,869 17.91% 2,411 83.33% 
#2: Bag-Of-Words + MeSH 10% 28,506 23,223 18.53% 4,061 85.75% 

28,506 features. On the other hand, configuration #3 (the 
keywords) contains a fixed set of 573 features, therefore 
�95% smaller than the smallest feature sets extracted by the 
other configurations. Configuration #2 generally demonstrated 
the best performance, and can be recommended as the most 
suitable feature set for this task. It is a combination of 
Bag-Of-Words and MeSH terms, resulting in a higher number 
of features, and therefore providing more information to build 
the decision boundary. 

Feature selection. The models using IDF and Odds Ratio as 
feature selection achieved comparable results. However, the 
reduction in the feature space size provided by Odds Ratio 
is significant, while maintaining similar performance to the 
models with no feature selection. By using this selection 
method, the features that are kept are the most likely to 
be seen when an included instance is seen. This approach 
contributes to generate a feature subset that is better tailored 
to recognize the most relevant documents, while removing 
attributes that are not discriminative for these documents. 

VI. CONCLUSION 

We developed a supervised learning method to support 
the HIV literature screening. which can negatively affect the 
performance of classification algorithms. Data undersampling 
and feature selection were analysed as methods to overcome 
this problem. After experimenting with 105 classification 
models, we identified the two best models that seem to best 
support HIV literature screening. 
For first model, which we call HM 1, is composed of a 
training set containing 40% of included and 60% of excluded 
instances, and uses a Bag-Of-Words and MeSH terms as 
features. HMl reached a recall of 0.9 for the included class, 
which indicates that 90% of the included instances were 
correctly classified. After applying feature selection, the best 
performing model, which we call HM2 yielded a recall of 
0.88 for the included class. HM2 has a similar composition 
as HM 1, but the set of features was filtered using Odds 
Ratio. While HM2 achieved similar results to HM1, the set of 
features in HM2 is �83% smaller than in HM1, which makes 
it a better model when computational resources is a concern. 

The use of an automatic approach to support literature 
screening can greatly benefit experts working in HIV 
systematic reviews. Our results indicate that, by utilizing 
classification models, the great majority of instances to be 
potentially included in reviews by researchers can be precisely 
labeled. Being supported by our system, experts might be 
able to considerably decrease the amount of time and effort 
needed to collect mv systematic reviews. 



Reproducibility. Our prototype can be re-used to support 
different literature screening tasks beyond the one described 
here. The prototype was implemented in Java and is composed 
of several modules that allow the use of other datasets, 
other undersampling methods, other features and other feature 
selection methods. The developed software prototype is hosted 
in the Tsang Lab GitHub repository, and is available under the 
MIT License at https:llgithub.com/TsangLab. 
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