
Natural Language Processing for
Semantic Assistance in Web Portals

Fedor Bakalov∗, Bahar Sateli†, René Witte†, Marie-Jean Meurs†,‡, Birgitta König-Ries∗
∗Institute for Computer Science, Friedrich Schiller University of Jena, Germany

†Semantic Software Lab, Concordia University, Montréal, QC, Canada
‡Centre for Structural and Functional Genomics, Concordia University, Montréal, QC, Canada

Abstract—Web portals are a major class of web-based content
management systems. They can provide users with a single point
of access to a multitude of content sources and applications.
However, further analysis of content brokered through a portal
is not supported by current portal systems, leaving it to their
users to deal with information overload. We present the first
work examining the integration of natural language processing
into web portals to provide users with semantic assistance in an-
alyzing and interpreting content. This integration is based on the
portal standard JSR286 and open source NLP frameworks. Two
application scenarios, news analysis and biocuration, highlight
the feasibility and usefulness of our approach.

I. INTRODUCTION

Web portals emerged in the late 1990s, primarily as gateways
to different information resources available on the Internet
or within an enterprise intranet. Nowadays, a large number
of organizations use portals extensively as a single-point
access to information, applications, and people. Application
domains for portals vary from commercial (enterprise and
marketplace portals) to non-profit applications (governmental
and educational portals). However, due to the exponential
growth of the amount of content available through web portals,
it becomes more difficult and time-consuming for users to deal
with this information. Current portal systems enable users to
obtain relevant content using, for instance, keyword search
or directory structures. However, a serious bottleneck remains
by reading and interpreting the retrieved content. Oftentimes,
portal search engines return several hundreds or even thousands
of hits for a simple search query.

Natural language processing (NLP) and related semantic
technologies promise to support users in analyzing, trans-
forming, and creating knowledge from large amounts of
content. However, it is an open question how exactly these
technologies can be combined with existing information system
infrastructure like web portals, in a way that brings measurable
improvements to their users.

In this paper, we describe an architectural solution and a
graphical user interface to support portal users in retrieving,
transforming, and interpreting content using NLP tools. We
elaborate on an extension that integrates the web portal
technology with the Semantic Assistants framework [1], an
extensible software architecture that allows invoking literally
any NLP or text mining tool using either Web Services or
Application Programming Interfaces (API). We illustrate how
an average user can benefit from NLP in a web portal. For

instance, we show how NLP support in a news aggregating
portal can help users to find interesting and relevant news
stories and grab key points of a single news story. Moreover,
we illustrate how NLP tools in a biochemical literature portal
can alleviate the information seeking tasks of scientists.

II. BACKGROUND AND RELATED WORK

Our contribution in this paper is a solution that enables portal
users to use a variety of tools for Natural Language Processing
within a portal environment. We achieve this by extending the
web portal technology with a number of components that
allow invoking NLP applications encapsulated as web services
running on the Semantic Assistants framework. In this section,
we introduce these two technologies.

A. Portal Technology

A web portal is a web application that provides users
with a unified access to various information resources and
services. For instance, personal portals like My Yahoo!1

provide users with a wide spectrum of services, such as email,
maps, latest news, financial information, weather forecast,
entertainment and communication, and many more. Apart from
the aggregation of content and services, important properties of
a web portal include single sign-on, consistent look-and-feel,
and personalization.

One of the most widely used industry standards for portal
technology is the Java Portlet Specification JSR2862. This
standard defines an Application Programming Interface (API)
for developing portlet applications in the Java programming
language. According to the standard, the portal infrastructure
consists of three major components: portlets, portlet container,
and portal server. A portlet is a pluggable user interface
component that provides a specific piece of content or an
application. Some concrete examples of portlets are: a map
portlet, a portlet for flight booking, a car rental portlet, or
a weather forecast portlet. Portlets can be aggregated into
a portal page (Fig. 1), where they can work together to
support users in complex tasks, e.g., travel planning. Portlets
are displayed in portlet windows. Depending on the portal
configuration, a portlet window may contain title and control
buttons to configure, minimize, maximize, and close the portlet.

1My Yahoo!, http://my.yahoo.com/
2Java Portlet Specification, http://jcp.org/aboutJava/communityprocess/final/

jsr286/

http://my.yahoo.com/
http://jcp.org/aboutJava/communityprocess/final/jsr286/
http://jcp.org/aboutJava/communityprocess/final/jsr286/

m E HM<Title>

<Portlet Content>

m E HM<Title>

<Portlet Content>

m E HM<Title>

<Portlet Content>

Decoration and controlsPortlet fragment

Portlet windowPortal page

Fig. 1. Portal page (adapted from JSR286)

A portlet container is the component that provides the execution
environment for portlets and is responsible for managing the life
cycle of portlet instances, i.e., their instantiation, initialization,
use, and end of service. It is also responsible for handling the
inter-portlet communication and storing the portlet preferences.
Finally, a portal server is a mediator component operating
between the client and the portlet container. It is responsible
for aggregating portlets into a portal page and submitting user
requests from the portal page to the portlet container.

B. Semantic Assistants Framework

The Semantic Assistants [1] architecture, depicted in Fig. 2,
is an existing open source service-oriented framework that
brokers context-sensitive NLP pipelines as W3C standard
web services3. The goal of this framework is to bring NLP
techniques directly to end users, by integrating them within
common desktop applications, such as word processors or
email clients. Towards this end, the core idea of the Semantic
Assistants approach is to take existing NLP frameworks, like
GATE [2], and wrap their concrete analysis pipelines so that
they can be brokered through a service-oriented architecture,
allowing desktop clients connected to the architecture to
consume the NLP services via a plug-in interface.

The NLP pipelines in the Semantic Assistants repository
are formally described using the OWL language, which allows
the Semantic Assistants server to dynamically discover them
and reason on their capabilities before recommending them to
clients. Any service deployed in the repository is automatically
available to all clients connected to the architecture, using
standard WSDL4 interface descriptions.

The integration of new clients into the architecture is
achieved via designing plug-ins. This is further facilitated by

3Web Services Architecture, http://www.w3.org/TR/ws-arch/
4Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl

the Semantic Assistants Client-Side Abstraction Layer (CSAL).
CSAL is essentially a Java archive library of common com-
munication and data transformation functionality that can be
reused by clients to communicate with the Semantic Assistants
server and transform NLP results to other useful data types. By
integrating a client into the Semantic Assistants architecture, its
users are not concerned with the implementation or integration
of NLP services: from their point of view, they only see
context-sensitive Semantic Assistants relevant for their task at
hand. Thus, in this work we investigated how web portals can
be integrated into this framework (see Fig. 2). As discussed
in Section III, integrating Semantic Assistants with portal
technology brings a number of portal-specific challenges.

C. Related Work

The history of theoretical foundations of Natural Language
Processing (NLP) can be tracked back to the 1950s. Since then
NLP has been introduced to a number of desktop applications,
e.g., for summarization of texts in word processors. Also, NLP
has been widely used in scientific applications, e.g., for protein
annotation [3], extraction of relationships between cancer-
related drugs and genes [4], extraction of clinical conditions
and diagnoses from medical records [5], and many others.

However, relatively little research has been conducted on
integration of the NLP technology with web-based systems
oriented on an average web user. There are relatively few
web applications that provide an inbuilt NLP support for
their users. OpenCalais5 is one of the few tools delivering
NLP functionality that can be integrated into web systems.
OpenCalais is a web service that provides functions for
named entity extraction and document categorization. Several
web applications leverage this service for helping users in
understanding web content. For example, Gnosis6 is a browser
extension for Firefox and Internet Explorer that extracts named
entities from web pages and enables users to highlight entities
of selected types in the text. Also, OpenCalais is used for
assisting web developers in generating semantically annotated
content and enriching it with additional information. Tagaroo7

is one of examples of such application. It is a plugin that adds
NLP-support to WordPress blogging and content management
system. The plugin suggests semantic tags to blog entries or
content pages created with WordPress. Using the generated
tags, it also automatically retrieves multimedia content from the
web and enables the creator to include it in the text. A similar
functionality is provided by Zemanta8, a browser extension
that helps users of leading blogging systems to annotate and
enrich their blog entries with supplementary content retrieved
from the web. In addition to multimedia content, it inserts links
to related articles, Wikipedia pages, product descriptions from
major shopping websites, etc.

We have not found any evidence of existing NLP support
for portal technology. However, we believe that integration of

5http://www.opencalais.com/
6http://www.opencalais.com/Gnosis
7http://tagaroo.opencalais.com/
8http://www.zemanta.com/

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl

C
lie

n
t S

id
e

 A
b

s
tra

c
tio

n
 L

a
y
e

r

Tier 1: Clients Tier 4: Resources

a
p
p
lic

a
tio

n

N
e
w

Tier 2: Presentation and Interaction Tier 3: Analysis and Retrieval

E
c
lip

s
e

O
p
e
n
O

ffic
e
.o

rg

W
rite

r

P
lu

g
in

P
lu

g
in

NLP Subsystem

NLP Service Connector

W
e

b
 S

e
rv

e
r

Portal

Client Side Abstraction Layer

Service Invocation

Service Information Language Services

Question Answering

Index Generation

Information Retrieval

Information Extraction

Automatic Summarization

Language

Service

Descriptions

Indexed

Documents

External

Documents

Fig. 2. The Semantic Assistants system architecture

NLP with portal technology can provide portal users numerous
benefits. Due to the integration capabilities of portals, NLP
support can be provided on a broad spectrum of information
and applications delivered through web portals. It includes, but
is not limited to, internal documents, news, patents, scientific
publications, Enterprise Resource Planning systems, and many
others. As we describe in Section IV, portal users can benefit
from NLP services in a number of ways.

III. INTEGRATING NLP SERVICES INTO WEB PORTALS

The application of NLP services in a portal environment
differs from their usage in desktop environments, due to a
number of portal-specific aspects.

Targeted invocation. A portal page may consist of several
portlets, each providing different applications or pieces of
content. The user may want to have different types of NLP
support for different pieces of information. Moreover, a portal
page may contain certain fragments, i.e., navigation menus,
header, and footer, which should not be submitted to an NLP
service, since they can litter the results. Therefore, it must be
possible for the user to request NLP support for individual
portlets.

Content preprocessing and results caching. Invoking
certain NLP services for a large document or a large set of
documents may take considerable amount of time, depending
on the complexity of the invoked NLP service. However, an
average web user would typically expect the result within a few
seconds. If s/he does not get the result within this time, the user
may leave the page. Therefore, it must be possible for portlet
developers/administrators to configure the portal in such a way
that the content of certain portlets is preprocessed with the
most popular and/or most time-consuming NLP services. The
results of the preprocessing must then be stored in the portal.
Also, it must be possible to cache the results of a user-initiated

request for each NLP service in the portal and reuse them for
subsequent requests with the same invocation parameters.

Dealing with dynamic content. Portlets can display dy-
namic content that varies depending on the request parameters
and session attributes. For example, a portlet for rendering
content of a news story selects a document to display based
on the document ID, provided either as a request parameter or
a user session attribute. Therefore, the method that returns the
portlet content for submitting it to an NLP service must take
into account all the request parameters and session attributes.
They must also be taken into account when caching results of
NLP tools in the portal.

User-defined methods for viewing results. Result types
of NLP services may vary significantly from one service to
another. For instance, a named entity extractor returns a set
of named entities found in the submitted document, whereas
a summarizer returns a summary in the form of a new text
document. To ensure that the user can easily interpret the
results, they must be rendered in a suitable way. For example,
a set of named entities may be rendered as a sortable list
displayed next to the portlet containing the source document,
or the entities may be highlighted in the source text. Since it is
not always possible to foresee the user’s personal preferences
and the context of work, the user must be provided with a
possibility to select the view method for displaying the results.

A. System Architecture

In our research, we focus on portals that support the Java
Portlet Specification JSR286. The solution that we propose in
this paper can be applied to any portal server that supports this
standard, e.g., IBM WebSphere Portal, Liferay, or GateIn. A
JSR286-compliant portal can be integrated with the Semantic
Assistants framework by means of the following five extensions
(see Fig. 3).

Extension of JSR286 Generic Portlet:
Methods for Making Semantic Assistants Requests,

Generating Menu, Displaying Results, etc.

NLP Enabled Content Portlets

NLP Results View Portlets

CSS Styles and JavaScript Functions for
Semantic Assistants Menu

Portal Theme Extension

Persistence Model

Processing Requests, Receiving and Storing Results

Server Component

Portal

Sem
an tic A

ss istants Fram
e w

ork

C
lient Sid e Abstrac tion Laye r

Map Index Images Document

Requests Results Server
Preferences

View
Preferences

Document
Set

Fig. 3. Web Portal extension for Semantic Assistants NLP services

NLP-Enabled Content Portlet is a Java class that inherits
the default functionality of JSR286-compliant portlets and
additionally provides methods for interacting with the Semantic
Assistants framework. In particular, it adds the Semantic
Assistants menu (Fig. 6) to the portlet title bar and provides
methods for submitting requests to Semantic Assistants and
displaying their results. Portlet application programmers can
develop portlets with support for Natural Language Processing
by simply extending the NLP-Enabled Content Portlet Class,
which encapsulates all the necessary methods for interacting
with NLP services.

NLP Results View Portlets are intended for rendering
results of an NLP service requested for a certain content-
providing portlet. In our implementation, we developed the
following five view portlets:

• Map Portlet is intended for rendering geographic places
on a map. It renders entities of geographic location type,
e.g., continent, country, or city. It shows the detected
geographic names as bubbles on an interactive map9.

• Index Portlet can display a set of annotations as a sortable
list. The user can sort the list either alphabetically or
by the occurrence of the annotation in the source text.
By clicking an item in the list, the portlet will display
additional information, i.e., features of the entity, in a
popup window.

• Images Portlet is designed for displaying images for the

9Google APIs are used for the geocoding and maps

named entities found in the text of content providing
portlets. For each detected entity, the portlet can display
one or several images fetched from the web.10

• Document Portlet renders text of a single document
returned from an NLP service. For instance, it can render
a summary generated by a summarizer.

• Document Set Portlet displays a set of documents as a list
of hyperlinks. By clicking a hyperlink the user will be
provided with the content of the corresponding document
displayed in a separate window. For example, this portlet
can display a set of documents that were retrieved by an
NLP service based on the named entities found in the text
of the submitted source document.

Portal Theme Extension. The user interaction with the
NLP services in the portal is carried out in an asynchronous
way, i.e., the user can request NLP support and, once the result
becomes available, display it in view portlets without the need
to reload the portal page. To achieve that, we extended the
portal theme by inserting a set of Cascading Styles Sheets
(CSS) and JavaScript functions. In particular, this extension
includes styles and functions that provide interactivity for the
Semantic Assistants menu (Fig. 6) and the JavaScript functions
for triggering the methods of the NLP Enabled Content Portlets,
e.g., methods for making a request for NLP support, updating
the view portlets, or changing the view and server preferences.

Persistence Model is introduced to enable the content

10Microsoft Bing APIs are used for the image search

requests

user

srcPortlet

srcPortletParams

assistant

assistantParams

contentHash

date

result

results

srcPortlet

srcPortletParams

assistant

assistantParams

contentHash

result

resultType

id

viewPreferences

result

view

hasResult isViewedAs

serverPreferences

user

server

Fig. 4. Persistence model for NLP service results

preprocessing and results caching. It consists of the four
following storage classes (Fig. 4):

• Requests is the storage of the user-generated requests for
NLP support.

• Results is the storage of responses generated by NLP
services.

• View Preferences is the storage of user preferences for
the view methods for the result of a certain service.

• Server Preferences is the storage of user preferences on
the server.

Server Component is responsible for a number of back-
end operations, such as sending user requests to the Semantic
Assistants framework, receiving and storing the results. The
component is essential for enabling the asynchronous interac-
tion with NLP services. It allows that the user, after having
made a request on a page, can leave the page and return to it
to view the results later. The requests made by users are stored
in the Requests storage. As soon as a new request appears in
the storage, the component first checks if the Results storage
already contains a suitable result – the component searches
for an entry with the invocation parameters identical to the
ones of the request, i.e., it searches on five fields: srcPortlet,
srcPortletParams, assistant, assistantParams, and contentHash.
If a result entry is found (e.g., another user has previously
requested the same assistant on the same content), it writes
the result ID to the request entry. If no entry is found, the
component sends the request to the Semantic Assistants server
and waits for the response. When a result is received, the
component stores it in the Results storage and writes its ID
to the request entry. As soon as the request entry is assigned
a result ID, the component notifies the user interface, which
informs the user that the result is available and can be viewed.

B. Graphical User Interface

As a proof of concept, we implemented a functional
prototype according to the above described system architecture
using IBM WebSphere Portal. Fig. 5 displays a portal page with
one NLP-enabled content providing portlet and three portlets
for viewing NLP-results. The content providing portlet displays
the text of a news story. The Semantic Assistants button, shown

as a battler icon and located on the right side of the portlet
title bar, indicates that the user can request NLP support for
the portlet content. A mouse click on the button will open the
Semantic Assistants menu (Fig. 6).

Using this menu, the user can connect to a Semantic
Assistants server and view the list of offered assistants. This
list is presented as a collapsible menu. In the default state,
it displays the name and status of assistants. A click on an
assistant name will open a submenu providing the assistant
description and a number of controls for invoking the assistant
and viewing the results. In order to invoke an assistant, the
user needs to set the run parameters, if applicable, and click
the Run Assistant button. At this moment, the assistant status
will be set to requested. As soon as the result is available in
the portal, either found in the portal cache or newly received
from the Semantic Assistants server, the assistant status will
be changed to result available and its submenu will display
options for viewing the result, i.e., a list of view portlets. The
list of view portlets is determined based on the result type.
For example, the Information Extractor assistant, selected in
Fig. 6, extracts named entities from the source text and returns
them as an annotation set. Results of this type can be rendered
in four ways, namely on a map, as images, as an index, or the
entities can be highlighted in the source text (Fig. 5). Users
can select the view options they like and click the Display
Results button to view the assistant’s outcomes. If the user
wants to display results of several assistants in one portlet, the
results will be aggregated.

IV. APPLICATION SCENARIOS

In this section, we describe the application of our extension
on two concrete scenarios: news analysis and biochemical
literature analysis. Both scenarios demonstrate how users can
benefit from semantic assistance in web portals provided by
tools for NLP and text mining.

A. News Portal

News portals are one of the most wide spread applications
of portal technology. They provide one-point access to a broad
spectrum of news content from one or multiple media agencies.
There are several aspects that strengthen the need for NLP

N
LP

 R
es

ul
ts

 V
ie

w
 P

or
tle

ts

N
LP

-E
na

bl
ed

 C
on

te
nt

 P
or

tle
t

Semantic Assistants Button

Fig. 5. News portal with Semantic Assistants NLP services

support in news portals. First, the majority of news portals,
especially news aggregating portals, provide an enormous
amount of content on various topics. Second, the set of available
news stories is updated very frequently, sometimes on an hourly
basis. Both aspects may impede users in navigating through
the portal and in finding interesting news stories. Also, due to
the temporariness of user interest in happenings or situations
described by news stories, users tend to scan through stories,
instead of thoroughly reading them. They want to grab key
points of the story in the shortest possible amount of time.
Hence, users need intelligent support, assisting them in finding
the most interesting and relevant news stories, and helping
them in their analysis.

To address these challenges, we set up a news aggregating
portal with integrated NLP support. The portal (Fig. 5)
aggregates news stories from multiple leading news content
providers and delivers them to users through several category-
pages, such as politics, business, or science and technology.
Portal users can request NLP support for a set of news stories
of a certain category or for a single story. For example, using
the Semantic Assistants menu (Fig. 6) users can request Person
and Location Extractor on the portlet listing news stories in

the politics category. Once the result is available, users can
display the extracted person and location names in one or
multiple view portlets: in source, map, image, or index portlets.
If chosen, the map portlet will display all locations as bubbles
on the map. This can help users to get an overview of all
locations mentioned in the news stories related to politics. By
clicking a bubble on the map, the portal will highlight the news
stories containing the place that bubble corresponds to. In this
way, users can quickly find the stories of interest. Also, users
can request NLP support for a single news story. For instance,
they can request the Information Extractor assistant, which
will return a set of named entities contained in the text of the
story, e.g., organizations, people, locations, or dates. Users can
also view the extracted entities as an index, which can help
them to grab key points of the story and to decide whether it
is worth to read it. Additionally, they can request a summary
for the story and display it in the Document Portlet next to
the story. This can also help users to quickly get a rough idea
about the happening or situation described in the story.

B. Biochemical Literature Portal

This application scenario was developed within the
Genozymes project at Concordia’s Centre for Structural and

Fig. 6. Semantic Assistants menu for portals

Functional Genomics11. We created a web portal for biologists,
biochemists and geneticists that work on lignocellulose research.
The goal of this research is to find novel ways of creating
bioproducts and biofuels from green waste. Part of this work is
the curation of characterized glycoside hydrolases12 of fungal
origin from the domain literature. Towards this end, literature
from the PubMed13 portal needs to be evaluated for relevance,
which is a time-consuming task. While PubMed allows keyword
search, much more advanced semantic support can be provided
by domain-specific NLP analysis.

To support these researchers, we automatically import
new articles appearing on PubMed into a portal, processing
them with the mycoMINE NLP pipeline [6], which extracts
entities and facts related to fungal enzymes, such as enzymes,
organisms, assays, genes, substrates and pH, temperature or
activity assay conditions. Fig. 7 shows an example of queries
defined by a user interested in analyzing the genome of the
thermophilic fungus Myceliophthora thermophila. The Query
portlet displays the search queries relevant for the user in
terms of keywords or sets of keywords s/he has defined. These
queries can be hierarchically organized and modified by adding,
renaming or deleting keywords. The Listing portlet presents
the most relevant papers found among new articles appearing

11CSFG, http://genomics.concordia.ca/
12family of enzymes used to break down plant cell walls
13PubMed http://www.ncbi.nlm.nih.gov/pubmed/

on PubMed with regards to all or a selected subset of the user
queries. In our example (Fig. 7), the mention of Glutamine
Synthetase has been selected in the Query portlet and the
user has requested mycoMINE on the papers appearing on
the Listing portlet. The Index portlet displays the mycoMINE
results in terms of entities and facts mentioned in the papers.
These mentions are provided with their associated features.
An example of features related to the carbamoyl phosphate
synthetase enzyme is shown in the gray pop-up window in
Fig. 7. The number of different occurrences is indicated for
each type of entities and facts (33 different enzymes have been
found in the document set presented in our example). Each
reported entity or fact is linked to the corresponding mention in
the texts. The mentions are underlined, then highlighted when
the user selects the corresponding entity or fact in the Index
portlet. The user is thereby able to focus on the interesting
sections of the relevant papers presented through the portal.
In such a way, portal users can apply NLP tools not only on
scientific publications, but also on variety of other resource and
applications that can be aggregated using portal technology,
such as patents, databases of genes and drugs, samples, or
observation and sensor data.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel technical solution and
interaction patterns for the integration of NLP tools with portal
technology, in order to provide semantic assistance to users
of web portals. Our approach allows users to benefit from
a broad spectrum of various NLP services, such as named
entity extractors, summarizers, indexers, and others. Users can
use these services on a multitude of content and applications
delivered through modern portals. We have illustrated this
using two application scenarios, namely, a news aggregating
portal and a portal for biochemical literature. We have showed
how this integration can help users to find interesting and
relevant news stories and to quickly grab key points from the
text of individual stories. Also, we have illustrated how NLP
support in a biochemical literature portal can assist scientists
in accomplishing their information seeking tasks.

Currently, we are working on enhancing NLP support in por-
tals by introducing personalization features using our previous
work on semantic user modeling [7], [8] and personalization
of portal resources [9]. We believe that portal users can benefit
more from this support if the results of NLP tools are tailored
to individual users, i.e., to their interests, background, and
expertise. We are working on methods for automatic generation
of ontology-based user models using the semantic output of
NLP tools. Also, we are developing methods for adapting
the NLP results based on the user model. These methods
include but are not limited to filtering, sorting, and highlighting
extracted entities according to user interests.

Finally, we are currently evaluating the effectiveness of this
integration using the biochemical literature portal described in
Section IV. The portal is being used by biologists, biochemists,
and geneticists from the Genozymes project at Concordia
Centre for Structural and Functional Genomics. In the near

http://genomics.concordia.ca/
http://www.ncbi.nlm.nih.gov/pubmed/

Fig. 7. Biochemical literature portal with Semantic Assistants NLP services

future, we will analyze the portal usage data, interview
users, and ask them to evaluate the system using the USE
questionnaire [10], which takes into account four usability
aspects, namely, usefulness, satisfaction, ease of use, and ease
of learning.

Acknowledgements. Part of this work has been funded
by Genome Canada and Génome Québec. The work on the
integration of portal technology with NLP was sponsored by
the IBM Ph.D. Fellowship Awards Program and carried out in
the framework of the Minerva Portals Project in cooperation
IBM Deutschland Research & Development GmbH.

REFERENCES

[1] R. Witte and T. Gitzinger, “Semantic Assistants – User-Centric
Natural Language Processing Services for Desktop Clients,” in 3rd
Asian Semantic Web Conference (ASWC 2008), ser. LNCS, vol. 5367.
Bangkok, Thailand: Springer, 2008, pp. 360–374. [Online]. Available:
http://rene-witte.net/semantic-assistants-aswc08

[2] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani,
I. Roberts, G. Gorrell, A. Funk, A. Roberts, D. Damljanovic,
T. Heitz, M. A. Greenwood, H. Saggion, J. Petrak, Y. Li, and
W. Peters, Text Processing with GATE (Version 6). University of
Sheffield, Department of Computer Science, 2011. [Online]. Available:
http://tinyurl.com/gatebook

[3] H. Xie, A. Wasserman, Z. Levine, A. Novik, V. Grebinskiy, A. Shoshan,
and L. Mintz, “Large-scale protein annotation through gene ontology,”
Genome Research, vol. 12, no. 5, p. 785794, 2002.

[4] T. Rindflesch, L. Tanabe, J. Weinstein, and L. Hunter, “EDGAR:
extraction of drugs, genes and relations from the biomedical literature,”
in Pacific Symposium on Biocomputing, 2000, pp. 517–28.

[5] H. Ware, C. Mullett, and V. Jagannathan, “Natural language processing
framework to assess clinical conditions,” Journal of the American Medical
Informatics Association, vol. 16, no. 4, pp. 585–589, 2009.

[6] M.-J. Meurs, C. Murphy, I. Morgenstern, G. Butler, J. Powlowski,
A. Tsang, and R. Witte, “Semantic text mining support for lignocellulose
research,” BMC Medical Informatics and Decision Making, Vol 12 Suppl
1, 2012. [Online]. Available: http://www.biomedcentral.com/1472-6947/
12/S1/S5

[7] F. Bakalov, B. König-Ries, A. Nauerz, and M. Welsch, “A Hybrid
Approach to Identifying User Interests in Web Portals,” in Proc.
of the 9th Int. Conf. on Innovative Internet Community Systems,
2009. [Online]. Available: http://www.minerva-portals.de/publications/
refereed-publications/a-hybrid-approach-to-identifying-user

[8] ——, “Introspectiveviews: An interface for scrutinizing semantic
user models,” in Proc. of the 18th Int. Conf. on User
Modeling, Adaptation, and Personalization, 2010. [Online]. Avail-
able: http://www.minerva-portals.de/publications/refereed-publications/
introspectiveviews-an-interface-for-scrutinizing

[9] A. Nauerz, F. Bakalov, B. König-Ries, and M. Welsch,
“Personalized recommendation of related content based on
automatic metadata extraction,” in Proc. of the 18th
Int. Conf. on Computer Science and Software Engineering,
2008. [Online]. Available: http://www.minerva-portals.de/publications/
refereed-publications/personalized-recommendation-of-related-content

[10] A. Lund, “Measuring usability with the USE questionnaire,” Usability
Interface, vol. 8, no. 2, 2001.

http://rene-witte.net/semantic-assistants-aswc08
http://tinyurl.com/gatebook
http://www.biomedcentral.com/1472-6947/12/S1/S5
http://www.biomedcentral.com/1472-6947/12/S1/S5
http://www.minerva-portals.de/publications/refereed-publications/a-hybrid-approach-to-identifying-user
http://www.minerva-portals.de/publications/refereed-publications/a-hybrid-approach-to-identifying-user
http://www.minerva-portals.de/publications/refereed-publications/introspectiveviews-an-interface-for-scrutinizing
http://www.minerva-portals.de/publications/refereed-publications/introspectiveviews-an-interface-for-scrutinizing
http://www.minerva-portals.de/publications/refereed-publications/personalized-recommendation-of-related-content
http://www.minerva-portals.de/publications/refereed-publications/personalized-recommendation-of-related-content

	Introduction
	Background and Related Work
	Portal Technology
	Semantic Assistants Framework
	Related Work

	Integrating NLP Services into Web Portals
	System Architecture
	Graphical User Interface

	Application Scenarios
	News Portal
	Biochemical Literature Portal

	Conclusion and Future Work
	References

