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Laboratoire d’Analyse Non linéaire et Géométrie (EA 2151), F-84018 Avignon, France.
mohamed.didi-biha@univ-avignon.fr
present address : LMNO, Université de Caen,
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Abstract: Given G = (V,E) a connected undirected graph and a positive

integer β(|V |), the vertex sperator problem is to find a partition of V into

noempty three classes A, B, C such that there is no edge between A and

B, max{|A|, |B|} ≤ β(|V |) and |C| is minimum. In this paper we consider

the vertex separator problem from a polyhedral point of view. We introduce

new classes of valid inequalities for the associated polyhedron. Using a natural

lower bound for the optimal solution, we present successful computational ex-

periments.
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1 Introduction

Let G = (V,E) be a connected undirected graph and β(n) be a positive

integer, where n = |V |. The vertex separator problem (VSP for short) is, given

G and β(n), to find a partition of V into three nonempty classes A, B, C such

that

(i) There is no edge between A and B;

(ii) max{|A|, |B|} ≤ β(n);

(ii) |C| is minimum.
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The subset C is called a separator. For convenience, a partition {A,B,C} of

V which satisfies (i) and (ii) will be also called a separator.

This problem, originated in the area of VLSI design, appears in a wide range

of applications. In communication networks , a separator is seen as a bottleneck

when a graph represents the network. To check the capacity and brittleness

of a network, the separator is used to find bounds and brittle nodes. In the

field of graph algorithms, the computation of balanced small-sized separators is

very useful, especially for divide-and-conquer algorithms. In bioinformatics and

computational biology, separators are wanted in grid graphs providing a simpli-

fied representation of proteins. Fu et al.[4] explore the protein folding problem

in finding the conformation with minimal energy, i.e. a conformation with the

maximal number of non-consecutive vertices occupying neighboring positions.

The VSP is NP-hard [6, 2]. The problem is still NP-hard even if G is planar

graph [5]. When β(n) = n − k for some positive constant k, the problem

becomes polynomially solvable [1]. As it was mentionned in [1], the VSP is

trivial if β(n) = 1 and it is polynomially solvable if β(n) ≥ n− 1.

Despite the fact that VSP has been the subject of extensive research, the

first polyhedral approach was done only in 2005 by Balas and De Souza [1, 8].

The present paper concerns only the VSP from a polyhedral point of view.

This paper is organized as follows. In the next section, we present the

polyhedron associated with the VSP and we introduce new classes of valid

inequalities for this polyhedron. We introduce a natural lower bound for the

optimal solution. This lower bound can be calculated in a polynomial time.

In Section 3 we present experimental results on large instances of VSP. Our

computational results compare favorably with those obtained by Balas and De

Suza. Some concluding remarks are given in Section 4.

The remainder of this section is devoted to more definitions and notations.

The graphs we consider are finite, undirected and connected. We denote a

graph by G = (V,E), where V is the node set and E is the edge set. If e is

an edge with end-nodes u and v, then we write e = (uv). If W ⊆ V , the set

of edges having one end-node in W and the other one in W = V \W is called

a cut and is denoted by δ(W ). The set of edges having both end-nodes in W
will be denoted E(W ). If W1, W2 are disjoint subsets of V , then [W1,W2]
denotes the set of edges of G which have one node in W1 and the other one

in W2. For U ⊆ V we denote by G(U) the induced subgraph on U (i.e.,

G(U) = (U,E(U)). If F ⊆ E, then V (F ) denotes the set of nodes of F and

G(F ) the subgraph of G induced by F .

A subset D of G is called dominator if for every v ∈ V \ D there exists

some node d ∈ D such that (vd) ∈ E.
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2 The vertex separator polyhedron

Let G = (V,E) be an undirected graph and β(n) be a positive integer,

where n = |V |. For every separator {A,B,C} we associate an incidence vector

(x, y) ∈ R2n defined by xv = 1 if v ∈ A and 0 otherwise, and yv = 1 if v ∈ B
and 0 otherwise. The convex hull of the incidence vectors of all separator is

called the vertex separator polyhedron and denoted P (G, β), that is,

P (G, β) = conv{(x, y) : (x, y) is the incidence vector of a separator}

The VSP is equivalent to solving the linear programm

max{
∑
v∈V

(xv + yv), (x, y) ∈ P (G, β)}.

If (x, y) is the incidence vector of the separator {A,B,C}, then (x, y)
satisfies the following inequalities :

xu + yv ≤ 1 ∀(uv) ∈ E (2.1)
xv + yu ≤ 1 ∀(uv) ∈ E (2.2)
xv + yv ≤ 1 ∀v ∈ V (2.3)
1 ≤

∑
v∈V

xv ≤ β(n) (2.4)

1 ≤
∑
v∈V

yv ≤ β(n) (2.5)

xv ∈ {0, 1} ∀v ∈ V (2.6)
xv ≥ 0, yv ≥ 0 ∀v ∈ V (2.7)

Inequalities (2.1) and (2.2) come from the fact that there is no edge between A
and B. Inequalities (2.3) come from the fact that A∩B = ∅. Inequalities (2.4)

and (2.5) come from the fact that A 6= ∅ 6= B and max{|A|, |B|} ≤ β(n).

In [1], Balas and De Souza have shown the following.

Proposition 2.1 P (G, β) = conv{(x, y) ∈ IR2n : (x, y) satisfies (2.1) −
(2.6)}.

Notice that only the vector x is restricted to be integer.

Balas and De Souza have studied the polyhedron P (G, β) and given sev-

eral families of facet defining inequalities. Central to their investigation is the

relationship between separators and dominators : In a connected graph, any sep-

arator and any connected dominator have at least one vertex in common. More

formally, they have proved that If {A,B,C} is a separator, then |C ∩D| ≥ 1
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for every connected dominator D ⊂ V .

Our approach is based on the following simple remark.

Remark 2.2 If {A,B,C} is a separator and a and b are two nodes such
that a ∈ A and b ∈ B, then C and any path from a to b have at least one
vertex in common.

Let u and v be two nonadjacent nodes. Denote by αuv the maximum

number of node-disjoint paths between u and v. Define

αmin = min{αuv : u , v ∈ V , (uv) /∈ E}.

It is clear that if {A,B,C} is a separator, then |C| ≥ αmin. Thus, αmin is a

lower bound of the cardinality of any separator. Thus, the following inequality

is valid for P (G, β): ∑
v∈V

(xv + yv) ≤ n− αmin (2.8)

Proposition 2.3 Let S be a subset of V and αS = Min{ᾱuv, u, v ∈
S, (uv) /∈ E}, where ᾱuv is the maximum number of node-disjoint paths
between u and v in G(S). The following inequality is valid for P (G, β).∑

s∈S
(xs + ys) ≤ |S| −Min{αS , |S| − β(n)} (2.9)

Proof. If G(S) is not connected or |S| ≤ β(n), then the inequality (2.9)

is trivially true. Now suppose that G(S) is connected and |S| > β(n). Let

(x, y) be an incidence vector for a certain separator {A,B,C}. If S ⊆ C,

then the left-side of the inequality (2.11) is equal zero. It is then obvious

that the inequality holds. Now suppose that S ∩ (A ∪ B) 6= ∅. Since |S| >
β(n), we have A ∩ S 6= S 6= B ∩ S. If S ⊂ A ∪ C (resp. S ⊂ A ∪ C),

then |(A ∪ B) ∩ S| = |A ∩ S| (resp. |(A ∪ B) ∩ S| = |B ∩ S|). Thus,

|(A ∪B) ∩ S| ≤ β(n) and hence,∑
s∈S

(xs + ys) ≤ β(n) = |S| − (|S| − β(n)).

If A ∩ S 6= ∅ 6= B ∩ S, then there are two nonadjacent nodes s1 and s2 such

that s1 ∈ A ∩ S and s2 ∈ B ∩ S. By Remark 2.2, C and any path in G(S)
from s1 to s2 have at least one vertex in common. Consequently, we have

|C ∩ S| ≥ ᾱs1s2 ≥ αS . Thus, |(A ∪B) ∩ S| ≤ |S| − αS and hence,∑
s∈S

(xs + ys) ≤ |S| − αS .
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The last two inequalities implie that inequality (2.11) holds.

The inequality (2.9) is very interesting. First it is a generalization of the inequal-

ity (2.9), which as we will see later is the key of our successful computational

experiments. Second, the parameter β(n) appears in this inequality.

In the following we will give an example to illustrate this inequality.

Let Ĝ = (V,E) be the graph of Figure 1. Let us consider the instance

of VSP with Ĝ and β(n) = 3. Let (x, y) be the fractional solution given in

paranthesis (the first number (respectively, second number) corresponds to xv
(respectively, yv)). It is not hard to see that (x, y) is an extreme point of the

polytope given by the inequalities (2.1)-(2.5) and (2.7). This polytope is the

linear relaxation of P (G, β). Let S = {v1, . . . , v5}. We have αS = 2 and

|S| − β(n) = 2. The inequality (2.9) cuts off the fractional extreme point

(x, y). By standard polyhedral techniques we can also proof that inequality

(2.9) defines a facet of P (Ĝ, 3).

(0.5,0)
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(0.5,0)

(0.5,0.5) (0.5,0.5)

(0,0.5) (0,0.5)
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Figure 1: Fractional extreme point

3 Computational experiments

The purpose of our numerical experiments is to mesure the effect of the lower

bound αmin by comparing our results with those obtained by De Souza and

Balas. Thus, the numerical tests have been performed on the same two classes

of instances considered by De Souza and Balas [8].

The instances in the first class, called DIMACS graphs, come from the DI-

MACS challenge on graph coloring. The graphs included have no more than

150 vertices, exception the instance myciel17 which has 191 vertices. The sec-

ond class of instances, called MatrixMarket graphs (MM graphs for short), is

composed by the intersection graphs of the coefficient matrices of systems of
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linear equation of the form Ax = b. The intersection graph of matrix A de-

noted G(A) = (VA, EA), is the graph defined as follows: VA is in bijection

with the columns of A and an edge (ij) ∈ EA if and only if there exists an

equation in Ax = b such that both variables xi and xj have a nonzero coef-

ficient. If the linear system is solved in a divide-and-conquer strategy, it will

be divided into two smaller subsystems that are solved separately. However,

the complete solution of those subsystems depends on the variables belonging

to both systems. The algorithmic cost of merging the solutions of the subsys-

tems to obtain the solution of the original system increases with the number

of such variables. The efficiency of the algorithm also requires that the size of

the subsystems must be bounded. Thus, the problem of choosing the best way

to partition the linear system is reduced to a VSP defined on G(A) (See De

Souza and Balas [8]). Three categories of MM graphs were generated. The

first one, called MM-I, corresponds to all matrices with 20 to 100 columns. The

second category, called MM-II, was obtained from the matrices whose number

of columns range from 100 to 200. The third category of instances, denoted

by MM-HD, only contains graphs of density at least 35%. The 104 instances

from the datasets presented above can be downloaded from [9].

Based on the arguments for the development of efficient divide-and-conquer

algorithms [7], De Souza and Balas assigned the value b2n
3 c to β(n). They com-

pared five codes, two of them variants of the branch and bound code XPRESS

and three of them combining branch and bound with a cutting planes procedure

they have developed. All runs were executed on a desktop PC equiped with a

Pentium 4 processor, with clock frequency of 2.5 GHz and 2 GB of memory.

Our tests were performed on Laptop Computer equiped with a Pentium M740

processor, with clock frequency of 1.73 GHz and 1 GB of memory (Notice that

the computer we used is less performant than the one used by De Souza and

Balas). They have been conducted in two steps. We first calculated αmin, the

lower bound of any cardinality of any separator. This achived by calculating p
max-flow, where p = |{(uv) : u, v ∈ V, (uv) 6∈ E}|. We used the code devel-

oped by Cherkassky and Goldberg [3] for the maximum flow problem( Source

code available at [10]). We then solved the following mixed-integer program

using Ilog-CPLEX 9.0 [11]
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Max
∑
v∈V

(xv + yv)

subject to

xu + yv ≤ 1 , xv + yu ≤ 1 ∀(uv) ∈ E
xv + yv ≤ 1 ∀v ∈ V∑

v∈V
(xv + yv) ≤ n− αmin

1 ≤
∑
v∈V

xv ≤ b
n− αmin

2
c

1 ≤
∑
v∈V

yv ≤ β(n) , 1 ≤
∑
v∈V

xia ≤ β(n),

xv ∈ {0, 1} ∀v ∈ V
yv ≥ 0 ∀v ∈ V

The inequality
∑
v∈V

xv ≤ b
n− αmin

2
c comes from the following: let {A,B,C}

be a separator. We can suppose without loss of generality |A| ≤ |B|. Since

|A|+ |B| ≤ n− αmin, we have |A| ≤ bn−αmin
2 c.

To make a comparison with the results of De Souza and Balas, we focused

on the following issues:

- The ability to obtain the optimal solution

- The number of Branch-and-Bond nodes explored

- The running times

The results of our computational experiments with those obtained by De Souza

and Balas [8] are presented in Tables 1 to 4, where each line corresponds to

one specific instance. The first column contains the instance name followed,

in parenthesis, by the number of vertices of the graph and d = 2|E|
|V |(|V |−1) its

density. The second column contains the value of αmin. The third column

contains the optimal solution value. The forth column contains the number of

Branch-and-Bound nodes explored in our experiments. The fifth column con-

tains the number of Branch-and-Bound nodes explored by De Souza and Balas.

The last two columns give respectively our running times and the one of De

Souza and Balas. For every instance, we compare our result with the best one

among the five codes used by De Souza and Balas. Our time running does not

include the calculation of αmin. In fact, the time spend on calculating αmin is

negligible.
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In their computational experiments, De Souza and Balas fixed the maximum

CPU time to 30 minutes. The instances for wich the time running of De Souza

and Balas is indicated with ”?” are those whose the five codes developed by

De Souza and Balas could not reach an optimal solution, or prove that such

solution was reached, within the imposed time limit. In our experiments, we

were able to find the optimal solution for all instances in small time. The only

exception being instance DSJC125.1 (Table 1.) for wich the optimal solution

was found after 163 minutes. Notice that after 30 minutes, the value of the

best integer solution was 91 (the value of optimal solution is 91) while the upper

bound is equal 101. For this instance, the value of the best integer solution

founded by De Souza and Balas was 89 while the upper bound was 102. In

Table 1, we summarize the results for DIMACS instances.

Table 1. DIMACS instances

Instances αmin Obj ] nodes ] nodes(SB) time(s) time(s) SB

david (87,0.11) 1 81 113 52 0.984 0.19

DSJC125.9 (125,0.90) 103 22 0 34241 0.703 794.36

games120 (20,0.09) 2 102 8088 96920 121.047 429.02

miles500 (128,0.14) 2 119 145 318 7.156 2.11

miles750 (128,0.26) 6 113 938 369 62.797 9.83

miles1000 (128,0.40) 11 110 168 65 19.062 13.62

myciel3 (11,0.36) 3 8 0 19 0.000 0.00

myciel4 (23,0.28) 4 17 37 48 0.109 0.03

myciel5 (47,0.22) 5 37 290 169 0.828 0.28

myciel6 (95,0.17) 6 76 551 458 12.094 5.14

myciel7 (191,0.13) 7 156 14737 2441 880.875 160.59

queen6 6 (36,0.46) 15 21 0 81 0.016 1.42

queen7 7 (49,0.40) 18 31 0 263 0.063 7.78

queen8 8 (64,0.36) 21 43 0 3533 0.031 42.44

queen9 9 (81,0.33) 24 55 959 291471 14.375 1067.5

DSJC125.1 (125,0.09) 5 91 523328 110792 9783.080 (1800) ?

DSJC125.5 (125,0.50) 51 74 120 16768 8.610 (1800) ?

queen8 12 (96,0.30) 25 65 3175 80695 77.297 (1800) ?

queen10 10(100,0.30) 27 67 5412 73956 105.765 (1800) ?

queen11 11 (121,0.27) 30 81 13410 22756 456.781 (1800) ?

queen12 12 (144,0.25) 33 97 24635 10567 1245.080 (1800) ?

We recall that for every instance, to make a comparison with our result, we

have chosen the best running time and the minimum number of nodes among

the five codes developed by De Souza and Balas. From Table 1, we see that 6

instances could not be solved by De Souza and Balas within the time limite of

30 minutes by any of their codes. In fact, excepting for the instance DSJC125.1

they have obtained the optimal solution but they could not have the proof of

their optimality. For example, in their experiments, the value of the best integer

solution for the instance DSJC125.5 was 74 while the upper bound was 86.

The Table 1 shows that when the instances are easy, we obtain the same per-

formance with the best code used by De Souza and Balas. On the contrary, for

the hard instances our results compare very favorably with those obtained by

De Souza and Balas. This conclusion is still true for MM instances as Tables 2

to 4 show.
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Table 2. MM-I instances

Instances αmin Obj ] nodes ] nodes(SB) time(s) time(s) SB

ash219 (85,0.06) 2 79 137 111 1.187 0.18

dwt72 (72,0.07) 2 68 26 59 0.500 0.07

can62 (62,0.11) 2 56 57 119 0.500 0.15

dwt66 (66,0.12) 4 62 8 31 0.312 0.06

bcspwr02 (49,0.15) 2 44 49 51 0.484 0.06

dwt 59 (59,0.15) 3 51 137 201 0.969 0.30

bcspwr01 (39,0.16) 2 36 13 13 0.125 0.02

ash85 (85,0.17) 6 72 593 971 8.610 2.87

dwt87 (87,0.19) 4 77 109 241 3.031 0.90

impcol b (59,0.19) 3 49 428 380 1.532 0.59

west0067 (67,0.19) 3 56 195 185 1.578 0.51

will57 (57,0.19) 2 53 55 17 0.531 0.05

can96 (96,0.20) 14 72 7787 259231 154.921 1131.60

steam3 (80,0.23) 8 72 108 313 1.828 0.81

curtis54 (54,0.24) 5 46 77 167 0.625 0.20

can73 (73,0.25) 10 53 1138 6997 8.266 21.82

bfw62a (62,0.34) 3 59 7 11 0.579 0.05

ibm32 (32,0.36) 4 24 69 72 0.313 0.07

pores 1 (30,0.41) 5 22 48 7 0.204 0.09

can61 (61,0.47) 12 46 90 5 2.109 0.82

bcsstk01 (48,0.55) 18 30 0 39 0.063 1.63

can24 (24,0.57) 8 16 0 17 0.000 0.05

fidapm05 (42,0.61) 12 30 44 5 0.422 0.10

fidap005 (27,0.67) 9 18 28 5 0.109 0.04

Table 3. MM-II instances

Instances αmin Obj ] nodes ] nodes(SB) time(s) time(s) SB

L125.ash608 (125,0.05) 2 118 142 82 2.375 0.50

L125.will199 (125,0.05) 1 119 135 119 2.562 0.35

L125.west0167 (125,0.06) 1 121 69 73 1.906 0.22

ash331 (104,0.06) 2 97 183 212 2.812 0.82

west0132 (132,0.06) 1 126 105 85 4.297 0.42

rw136 (136,0.07) 1 121 1635 17386 28.875 57.57

bcspwr03 (118,0.08) 2 112 99 73 2.422 0.38

gre 115 (115,0.09) 3 95 5573 6659 82.812 28.77

L125.dw 162 (125,0.12) 6 116 469 214 8.360 1.15

L125.can 187 (125,0.13) 12 111 786 5353 16.984 23.22

L125.gre 185 (125,0.15) 6 104 1300 2337 30.578 31.40

L125.can 161 (125,0.16) 12 97 15063 218627 580.797 (1800) ?

L125.lop163 (125,0.16) 9 163 308 6319 16.031 33.22

can 144 (144,0.16) 18 126 1362 64203 31.250 443.49

lund a (147,0.26) 11 118 385 2705 45.891 155.29

L125.bcsstk05 (125,0.35) 17 101 331 2301 30.812 54.29

L125.dwt 193 (125,0.38) 21 95 259 129 29.719 73.74

L125.fs 183 1 (125,0.44) 1 98 240 1175 35.016 36.21

bcsstk04 (132,0.68) 48 84 600 89 26.796 80.01

arc130 (130,0.93) 21 87 268 129 99.328 137.42
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Table 4. MM-HD instances

Instances αmin Obj ] nodes ] nodes(SB) time(s) time(s) SB

L100.steam2 (100,0.36) 16 76 175 167 8.781 30.98

L100.cavity01 (100,0.37) 8 85 115 7 10.657 3.52

L80.cavity01 (80,0.38) 8 65 125 15 4.578 2.22

L80.fidap025 (80,0.38) 12 68 52 7 2.625 1.14

L120.fidap025 (120,0.39) 18 102 82 21 9.61 9.27

L80.steam2 (80,0.40) 12 61 115 29 4.218 3.15

L100.fidap021 (100,0.41) 15 85 119 5 5.469 2.64

L100.fidap025 (100,0.41) 12 82 310 11 13.578 5.41

L120.cavity01 (120,042) 8 99 138 15 16.375 16.57

L120.fidap021 (120,0.43) 15 98 192 27 16.765 17.36

L80.fidap021 (80,0.43) 11 65 99 7 4.031 2.43

L120.rbs480a (120,0.46) 23 88 209 233 21.282 98.84

L120.wm2 (120,0.47) 1 98 171 33 18.781 19.27

L100.rbs480a (100,0.52) 26 73 156 63 13.953 11.91

L80.wm3 (80,0.55) 1 63 184 13 8.406 3.81

L80.wm1 (80,0.57) 2 59 155 59 8.64 11.13

L80.rbs480a (80,0.58) 18 62 43 5 3.5 0.97

L80.wm2 (80,0.58) 1 61 153 15 7.36 2.89

L100.wm3 (100,0.59) 1 77 179 9 19.656 4.79

L120.e05r0000 (120,0.59) 30 90 82 11 9.828 7.51

L100.wm1 (100,0.60) 1 74 196 27 27.782 11.65

L120.fidap022 (120,0.60) 30 84 219 177 30.782 94.06

L100.wm2 (100,0.61) 1 76 190 15 18.485 7.37

L100.fidapm02 (100,0.62) 27 69 255 13 25.125 6.35

L120.fidap001 (120,0.63) 35 82 237 27 37.532 22.56

L100.e05r0000 (100,0.64) 30 70 120 47 7.937 14.94

L120.fidapm02 (120,0.65) 27 86 223 11 42.953 12.29

L80.fidapm02 (80,0.65) 27 53 50 7 3.281 1.97

L100.fidap001 (100,0.68) 36 64 100 39 5.141 9.82

L100.fidap022 (100,0.68) 38 62 168 143 13.985 30.62

L80.e05r0000 (80,0.68) 19 60 133 3 7.937 0.96

L80.fidap001 (80,0.72) 2 54 84 1 3.14 0.98

L80.fidap022 (80,0.76) 39 41 75 171 2.172 10.05

L80.fidap002 (80,0.77) 27 53 83 9 3.328 1.71

L80.fidap027 (80,0.80) 24 56 81 3 4.469 1.18

L100.fidap027 (100,0.81) 27 69 187 5 23.437 4.15

L100.fidap002 (100,0.82) 34 66 102 3 6.234 2.38

L120.fidap002 (120,0.82) 52 68 121 71 10.453 37.86

L120.fidap027 (120,0.85) 35 83 229 9 50.719 9.07

4 Concluding remarks

In this paper, we have studied the vertex separator problem from a poly-

hedral point of view. We have introduced some new valid inequalities for the

vertex separator polyhedron. Using a natural lower bound we were able to solve

to optimality all the instances generated by De Souza and Balas [8] in small

time without using any sophisticated methods like a branch-and-cut algorithm.

This leads us to believe that larger instances could be routinely solved with a

cutting plane algorithm using this lower bound and the inequalities introduced

by Balas and de Souza .

An important problem which deserves to be adressed is to study the separation

problem of the inequality (2.9) and to use this inequality in the framework of a



11

cutting plane algorithm for the VSP.

References

[1] E. Balas and C. de Souza, The vertex separator problem : a
polyhedral investigation, Mathematical Programming, n. 3, 103(2005),

pp. 583–608.

[2] T.N. Bui and C. Jones, Finding Good Approximate Vertex and
Edge Partitions is NP-Hard, Information Processing Letters,42(1992),

pp. 153–159.

[3] B.V. Cherkassky and A.V. Goldberg, On Implementing
Push-Relabel Method for the Maximum Flow Problem, Algorithmica,

19(1997), pp. 390-410.

[4] B. Fu, S.A. Oprisan, and L. Xu, Multi-Directional Width-
Bounded Geometric Separator and Protein Folding, ISAAC, (2005),

pp. 995–1006.

[5] J. Fukuyama, NP-completeness of the planar separator problems,

Journal of Graph Algorithms and Applications, 4(2006), pp. 317–328.

[6] M.R. Garey and D.S. Johnson, Computers and Intractabiliy,

W.H. Freeman and Compagny, (1979)

[7] R.J. Lipton and R.E. Tarjan, A separator theorem for planar
graphs, SIAM J. Numer. Anal., 36(1979), pp. 177–189.

[8] C. de Souza and E. Balas, The vertex separator problem : algo-
rithms and computations, Mathematical Programming, n. 3, 103(2005),

pp. 609–631.

[9] http://www.ic.unicamp.br/~cid/Problem-instances/VSP.html

[10] http://www.avglab.com/andrew/soft.html

[11] http://www.ilog.com


