Improving Entity Linking using Surface Form Refinement

Eric Charton¹, Marie-Jean Meurs², Ludovic Jean-Louis¹
Michel Gagnon¹

¹Polytechnique Montreal, ²Concordia University, Montréal, QC, Canada

LREC 2014

May 26-31, 2014, Reykjavik, Iceland

Task & Context

Entity Linking

Linking name mentions of named entities (NEs) found in a document to their corresponding entities in a reference Knowledge Base (KB).

TAC-KBP Entity Linking evaluation campaign

Given a name (of a Person, Organization, or Geopolitical Entity) and a document containing that name, determine the KB node for the named entity, adding a new node for the entity if it is not already in the KB. The reference KB is derived from English Wikipedia.

Example

```
<query id="EL_000101">
<name>Reykjavik</name>
<docid>LREC_ENG_20140530</docid>
<beg>565</beg>
<end>574</end>
</query>
```

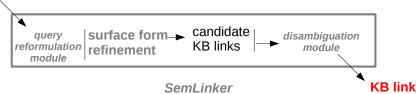
```
...
We attended a great conference in Reykjavik.
```

http://en.wikipedia.org/wiki/Reykjavik

Dealing with Ambiguity

Ambiguity is a key difficulty of the task.

- mentions of NEs often polysemous
- o potentially related to several KB entries
- make use of surface forms (extracted from Wikipedia)
 - o word or group of words e.g. Paris, New York City
 - matching sequences
 - \rightarrow to locate candidate entries in KB
 - → to disambiguate candidate entries


Spelling mistakes ⇒ missing or wrong identification of KB entries

Proposed Method & System Workflow

Algorithm for surface form refinement based on Wikipedia resources

→ correct name mentions of NEs (PER, ORG, GPE) according to their possible sources of variations and errors.

query

Surface Form Matching

Surface Form Matching Problem

Surface Form Matching \sim Edit Distance

o string-to-string matching

Matching of NE name mentions:

- → more difficult than matching of common words
 - o spelling variations (e.g. transcription from an alphabet to another)
 - phonetic variations (e.g. shortening)
 - o reduction of double names
 - o alternate names

Surface Form Matching for Entity Linking

String-to-string matching:

 \rightarrow does not solve the surface form identification problem.

Entity Linking context:

- correct/reformulate mentions + associate them to candidate entities
 - → make use of a resource of valid surface forms for KB entities
 - → Wikipedia-based corpora (benefiting from their internal structure)

Surface Form Matching for Entity Linking

Cases for which there is no surface form in Wikipedia-based corpora:

- abbreviation (that refers to a NE) not existing in Wikipedia
 e.g. JGL for Joseph Gordon-Levi [EL13_ENG_0319 KBP2013]
- abbreviation existing in Wikipedia but not redirected to its entity
 e.g. IPI for Intellectual Property Institute [EL13_ENG_1604 KBP2013]
- uncommon surface form, different lexical description in Wikipedia
 e.g. Bagdahd for Bagdad [EL13_ENG_1872 KBP2013]
- → cannot be handled by approaches based on Wikipedia content only

Surface Form Refinement

Improved Surface Form Detection Module

- relies on an enriched set of surface forms
- o surface forms from all Wikipedia internal links to encyclopedic docs
 - → links: redirections, interwikis, disambiguation pages
- surface forms from 6 language editions of Wikipedia
 - ightarrow English, German, Italian, Spanish, Polish, French
 - \sim 10 million surface forms
- automatic generation of additional surface forms + 4 millions
 - ightarrow abbreviations (e.g. JGL), alternative forms (e.g. plural), re-ordering n-grams (Barack Obama, Obama Barack)
 - ⇒ 14 millions of additional surface forms related to at least one Wikipedia document.

Surface Form Correction Module

- database of potential spelling errors built from a Wikipedia dump
 - → generation: Lucene-Wiki (Lucene-search extension)
- set of rules for validating suggested corrections
 - Rule A m common words between original and suggestion
 - Rule B maximum lexical distance of *n* letters
 - Rule C Levenshtein distance under given threshold

Surface Form Refinement Algorithm

- **S1.** submit mention to *Improved Surface Form Detection Module*. If matching surface form candidates are returned, proceed to step 3; else to step 2.
- **S2.** submit mention to *Surface Form Correction Module*.
 - If suggestions of alternative surface forms are returned, repeat step 1 using them to collect candidates.
 - Else return no suggestion, and exit.
- → disambiguate candidates, and select entity link.

Implementation in SemLinker

- the Surface Form Refinement Algorithm is integrated in the SemLinker system presented in TAC-KBP 2013 evaluation campaign
 - SemLinker is based on four modules:
 - → Query Reformulation module
 - → Mutual Disambiguation module
 - → Link Extraction module
 - → Clustering module
- our original surface form resource is NLGbAse, a Wikipedia-based multilingual resource. http://www.nlgbase.org

Experiments and Results

TAC-KBP Entity Linking task 2013

Category	All	PER	ORG	GPE	News	Web	Forum
# queries	2190	686	701	803	1134	343	713

	refSF	QR
Category	$B^3 + F_1$	$B^3 + F_1$
Overall	0.574	0.596
KB (in KB)	0.494	0.535
NIL (not in KB)	0.665	0.662
NW (news doc)	0.645	0.649
WEB (web doc)	0.579	0.592
DF (forum doc)	0.454	0.508
PER (person)	0.695	0.708
ORG (organization)	0.604	0.607
GPE (geopolitical entity)	0.440	0.486

Conclusion

Our Surface Form Refinement Algorithm:

- → improves the performance of our EL system
- \rightarrow is generic and reusable in other (EL) systems
- → is publicly released in the SemLinker open source software

```
http://code.google.com/p/semlinker
```

All the presented experiments are fully reproducible on NIST KBP data using the SemLinker software.